

Real-time ppb CO₂ Impurity Detection by an Advanced FTIR-UVF System

Presented at the BevTech Conference, Albuquerque, NM 2018

by

Charles M. Phillips Ph.D., Max Analytical Technologies Mark Taylor, Vice President, Airborne Labs International

- 1) Fast
- 2) Accurate
- 3) Sensitive
- 4) Robust Interference free

- 5) Ability to measure many analytes simultaneously
- 6) On-Line / Continuous

Recent Improvements in FTIR & UVF technologies appear to be able to meet these goals

What is FTIR?

Fourier Transform Infra-Red Spectrometry

- All modulated frequencies detected simultaneously
 - The resultant pattern is called an interferogram (signal vs time)
 - Which is a sum of an infinite number of cosine waves vs time
- Fourier transform calculates spectrum from interferogram
- FTIRs have numerous advantages
 - High signal-to-noise and spectral resolution are possible
 - Fast scanning, can collect full spectrum in less than 1 sec.
 - Calculated spectra for each molecule can be a constant

The Michelson Interferometer (most common type used in FTIR gas analyzers)

Single Beam & Absorbance Spectra

Single Beam Spectrum Voltage vs Frequency FT (Igram) = Single Beam Spectrum

Features are gaseous absorptions

Wavenumber (cm⁻¹)

Absorbance Spectrum Abs. vs Frequency

$$A=-log_{10}[I/I_o]=\epsilon \bullet I \bullet c$$

Wavenumber (cm⁻¹) (Ratioed /Subtracted Single Beam Sample – Single Beam Reference)

Complex FTIR Spectra from ISBT Listed CO₂ Impurities

(Each color is a different impurity gas + CO_2 Bands)

FTIR Gas Analyzer Layout

Technical Improvements in FTIR (Sensitivity & Selectivity) $A = -\log_{10}[I/I_o] = \epsilon \cdot I \cdot c$

- 1. Use TE cooled quantum detector (MCT) Sensitivity
- 2. Resolution and Frequency Precision Selectivity
- **3.** Run at lower resolution (4 cm⁻¹) Sensitivity
- 4. Quant region selection / "Picket Fencing" Selectivity & Sensitivity
- 5. Increase pressure / molecular number density Sensitivity
- 6. Multi-pass gas cell with high throughput Sensitivity

FTIR Calibration (Instrument Independent = Physical Measurement)

All analyzers are tuned to have the same resolution & optical frequency in order to achieve the <u>same calibration response</u> for all impurities

Analyzer Independent Impurity Calibrations

Instrument-to-Instrument Variation Based on Ethylene Measurements

Easily able to transfer calibration factors from one instrument to another

This means an FTIR analyzer should not require impurity re-calibration by a user – only periodic response verification is recommended

All Different FTIR Gas Analyzers and none were calibrated for Ethylene

The Challenges of IR Measurements in CO₂

- High AA is a common source of odor complaints & an ISBT Target Impurity
- AA is common in Fermentation & Combustion Feed Gas Sources
- Acetone is also a common impurity but NOT an ISBT listed Target

international society of beverage technologists

The Challenges of IR Measurements in CO₂

Real World Issues

Acetaldehyde (AA) False Positive Error **Potential when Acetone is present**

international society of severage technologists

The Challenges of IR Measurements in CO₂

• NO & NO₂ (NO_x) are ISBT Target Impurities

Sb

- NOx is common in Fermentation & Combustion Feed Gas Sources
- NO & NO₂ IR bands are superimposed by H₂O vapor bands

SO₂, NO and NO₂ with H₂O & CO₂ interference

"Picket Fencing" the Desired Data Nitric oxide (NO) analysis in presence of H₂O

Corrected NO Result after "Picket Fencing" & Other Spectral Corrections Applied

Ex	cl	Cal Spectra	Temp (C)	Pres (atm)	Conc (ppm-m)	Actual	Pred	Res. Cur	Residual A
		NO 5.059ppm.lab	35.307	4.995	25.851	25.841	25.963	-0.473 %	-0.472 %
		NO 10.119ppm.lab	35.253	4.995	51.708	51.695	51.754	-0.115 %	-0.114 %
		NO 20.238ppm.lab	35.276	4.994	103.416	103.371	102.682	0.666 %	0.667 %
		NO 30.357ppm.lab	35.344	4.995	155.124	155.050	154.972	0.050 %	0.049 %
		NO 40.476ppm.lab	35.157	4.994	206.832	206.803	206.768	0.017 %	0.016 %
		NO 50.595ppm.lab	35.158	4.994	258.540	258.538	258.223	0.122 %	0.122 %
		NO 60.714ppm.lab	35.110	4.996	310.249	310.375	310.888	-0.165 %	-0.166 %
X		NO 101.191ppm.lab	35.362	4.998	517.086	517.086	517.572	-0.094 %	-0.093 %
. E									

international society of severage technologists

The Challenges of IR Measurements in CO₂

- SO₂ is an ISBT Target Impurity
- SO₂ is common in Combustion Feed Gas Sources
- SO₂ IR bands are superimposed by H₂O vapor bands

Effect of H₂O on SO₂ FTIR Measurement

How do we know we have good "Interference Corrected" results for an impurity?

99.99% CO₂ IR Absorbance Spectrum (Highly Stabile Response for %CO₂ Purity Monitoring)

% CO₂ Measured after a Mass Flow Controlled Spike Of Acetaldehyde (AA) Std in N₂

beverage technologists

Benzene (AHC) Std MFC Spiking Response

UV-Fluorescence Detection of Sulfur Species as TSC

Step One: Totally Convert all sulfur impurity species in the sample into 1 oxidized (SO₂) form by a catalytic reactor oven (ex. ISBT Method 13.0)

 $C_nH_{2x}S_y + O_2 \rightarrow n CO_2 + x H_2O + y SO_2$

For CO₂ Samples, Reactor Oxygen is provided by precisely flow-metered Clean Dry Air (CDA)

UV Fluorescence TSC Detection

Step Two: Detect the total created SO₂ with UVF

$$SO_{2} \xrightarrow{h\nu (214 nm)}_{UV \text{ Excitation}} SO_{2}^{*} \rightarrow SO_{2} + \frac{h\nu (350 nm)}{Emitted UV \text{ Fluorescence}}$$

Source Lamp = I_o TSC Signal =I_f

- Detection with bandpass filter centered around 350nm to minimize any background interference
- Permeation Scrubber to remove trace of aromatics which can interfere with UVF sulfur measurement
- Photomultiplier detection (very sensitive)
- Result: MDL of <2 ppb TSC

S

UV-Fluorescence TSC Detection (as SO₂)

UVF MFC Spiking Results – TSC Gas Std (CS₂)

MDL = Minimum Detection Limit

IMPURITY	IR-UVF MDL		
Benzene (AHC)	2 ppb	2-5 ppb	
Total Sulfur (TSC	:) 2 ppb	30 ppb	
SO2	2 ppb	30 ppb	
TNMHC	20 ppb	500 ppb	
тнс	20 ppb	500 ppb	
CH4	6 ppb	500 ppb	
H2O	40 ppb	5,000 ppb	
Acetaldehyde	3 ppb	100 ppb	
Acetone	3 ppb	NA	
со	20 ppb	1,000 ppb	
NH3	20 ppb	250 ppb	
HCN	40 ppb	200 ppb	
NO	20 ppb	250 ppb	
NO2	6 ppb	250 ppb	
Ethane	5 ppb	NA	
Propane	5 ppb	NA	
Pentane	5 ppb	NA	
Methanol	10 ppb	2,000 ppb	
CO2 % Purity	+/- 0.1%	+/-0.1%	

international society of |[®] beverage technologists |

Real-time ppb CO₂ Impurity Detection by an Advanced FTIR-UVF System

Thank you for your time & attention

Questions?

BevTech 2018

